Data analysis, modeling, and prediction of underperforming cochlear implant patients based on individual anatomy (CT), brain signals (EEG), and audiological

M」H

Yifan Wang^{1,6}, Samuel John¹, Björn Lyxell⁵, Holger Blume⁴, Thomas Lenarz^{1,2}, Andrej Kral³

E-Mail: <u>wang.yifan@hoersys.de</u>

¹HörSys GmbH, Hanover, Germany

²Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany ³Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Hannover, Germany ⁴Institut für Mikroelektronische Systeme, Leibniz Universität Hannover, Hannover

⁵University of Oslo, Oslo, Norway (Comm4CHILD secondment)

⁶Auditory Sciences program, Hanover Medical School, Hanover, Germany

Introduction

1. Understanding the causes for poor cochlear implantation outcomes is a difficult research challenge¹.

• Investigate both technological factors and biological factors.

nm4CHILD

2. Getting insight into a patient's specific anatomy through CT imaging of the temporal bone is critical for the otologists to perform cochlear implantation², but manually segmenting the anatomical structures² is difficult.

• Create a 3D automated classification and segmentation pipeline (on 3D temporal bone CT scan).

• Start with a 2D binary classification and localisation of single/multiple slice(s) of

Where is the

cochlea?

• Combine audiological results and anatomical factors for understanding and ultimately predicting the outcomes of cochlear implantation.

3D CT scans (cochlear's presence).

Data Preparation

Methods

Currently we have 10 anonymous patients manual segmented CT scan

Crop 2d slice from augmented cropped 3D volume

The results are preliminary. \bigcirc

- High 2D binary classification accuracy on CT scans from the same scanner. \bigcirc
- Resolution pyramid could be applied for speeding up the application of classifier (on 2D selected slice).
- More data sets and manual segmentation will be included.
- Combine 2D result to locate cochlea in 3D (apply 2D classifier on multiple slices).
- Build directly 3D classifier and apply it on 3D volumes (instead of 2D slices of 3D volumes).

We may also load a parametrised 3D model of the cochlea based on the localisation of interested structure.

References:

- 1. Pisoni D. B., Kronenberger W. G., Harris M. S., Moberly A. C. (2017). Three challenges for future research on cochlear implants. World Journal of Otorhinolaryngology-Head and Neck Surgery, 3(4), 240–254. https://doi.org/10.1016/ <u>j.wjorl.2017.12.010</u>
- 2. Neves C. A., Tran E. D., Kessler I. M., Blevins N. H. (2021). Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. Sci Rep,11(1):116. <u>https://doi.org/10.1038/s41598-020-80619-0</u>

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860755".